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Abstract. We consider a directed random walk making either G-drmoves and a Brownian
bridge, independent of the walk, conditioned to arrive at pbiat time7. The Hamiltonian is
defined as the sum of the square of the increments of the bridge between the moments of jump
of the random walk and is interpreted as an energy function over the bridge configuration; the
random walk acts as the random environment. This system provides a soluble model inspired by a
closely related but distinct model of proteins. The thermodynamic limit of the quenched specific
free energy is shown to exist and to be self-averaging, i.e. it is equal to a trivial—explicitly
computed—random variable. An estimate of the asymptotic behaviour of the ground-state energy
is also obtained.

1. Definition of the model and main results

Disordered systems are nowadays thoroughly studied as condensed matter models in the
presence of impurities. Interesting questions, both mathematically and physically, concern
the sample dependence or independence of intensive quantities: the specific free energy
in statistical mechanics of spin glasses or the integrated density of states in spectral
theory. Closely related models are random walks in random environments; in this context,
interesting questions concern the possible modifications of the critical exponents governing
the asymptotic behaviour or the need for unusual normalization for the classical limit
theorems of probability theory to hold [17].

More recently, the methods developed in the statistical mechanical study of disordered
systems have been applied to other systems like long protein or RNA molecules. Itis argued
that a protein molecule is very much like a random walk with random charges attached at
the vertices of the walk; these charges are interacting through local interactions mimicking
Lennard—Jones or hydrogen-bond potentials.

The purpose of this paper is to rigorously study a soluble model arising in protein
conformation. The model studied here is inspired by a recent article [6] and is very
reminiscent, although distinct, of this latter model. Protein conformation has a long history
(see [8] for a recent update of the physical theories). On the basis of replica trick heuristics,
it is claimed in [7] that the protein undergoes a phase transition between an unfolded state
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1268 S Martnez and D Petritis

and a folded biologically active state. Kantor and Kardar [11] have introduced a model
defined on the product spackyy x Qu, of N-step one-dimensional nearest-neighbour
random walks

Wy=1{r:{1,...,N} > Zwithri,;—r,e{-1 1} for1<i <N -1}

equipped with the uniform probability, with the probability spa@@y, 7, P) where a
collection ¢ = (g:)1<i<y Of symmetric, independent, and identically distributed random
variables are defined. For givén ¢), the Hamiltonian used in [11] is given by

HE )= " qiqidn., (€3]

I<i<j<N

and has the interpretation of the conformational energy of a protein moleculeMnithits
whose geometrical shape is given byand whose charges over the constituting units are
given by g; these charges interact through an ultra-local interaction. In [11], the random
variablesg are symmetric Bernoulli variables with values in the rafgé, 1}. This model
is quite degenerate due to the discrete character ofjthariables. For that reason, in
[5], the model having the same Hamiltonian as that of formula (1) but with the variables
g being independent Gaussian was studied. Both models are, however, quite intractable
and, therefore, in [6] a further simplification was proposed: namely, the varightes
independent Gaussian, the Hamiltonian is again given by the same formula (1), but it is
defined on the spacBy of directed nearest-neighbour random walks

Dy=1{r:{1,...,N} — Nwith r,.s —r; € {0,1} for 1 <i < N}

instead of being defined anWy. This latter simplification allowed the use of transfer matrix
techniques which, combined with numerical experiments, gave the asymptotic (foMarge
behaviour of the ground-state energy,.inf, H*X (r, ¢), of this simplified model under the
constraint that the total charg®, = Z,N: 1 ¢i, is conditioned to remain fixed to a constant
b.

All the models introduced so far have been studied in the literature by using severe
approximation methods. In most of the previous studies the self-averaging property of the
free energy has been taken for granted [14]. Notice, however, that the Hamiltonian (1) is of
short range in the image space of the random walk but it is a ‘complete graph’ Hamiltonian
on the internal clock of the random walkherefore classical subadditivity arguments do
not apply in order to guarantee the existence of the specific free energy

Most of the previously published works use the replica trick to study the aforementioned
models [11,7,14]. However, the replica trick is a drastic approximation of the original
modelbelievedto hold for mean-field models and is known to predict wrong results when
applied to short-range models [13] (see [16] for a recent review). The Hamiltonian (1) is
neither a short range nor mean-field one, as we explained above. It is therefore questionable
as to whether it is legitimate even to hope that the replica trick should be applicable for the
study of these models.

To go beyond all these unjustified approximations, Derrida and Higgs [6] introduced
a simplification of the model that, supported by numerical evidence, allowed the study of
the ground-state energy. Our aim is to go beyond the ground-state energy and to study the
thermodynamics of this model. The main difficulty, however, is to satisfy the constraint
Q = b, implying a conditioning on this event, known to be a delicate procedure [12]. To
avoid such subtleties, we have decided to work on the sp@ce b}. Our starting point
is the Hamiltonian (1) considered as a function on the sgagan a random environment
r € Dy. Therefore our model, although closely related to that of [6], is distinct from it
as it considers charges as the thermodynamic variables and geometries as the environment.
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Thus, in [6], for a given charge distribution, how the geometry of the polymer is adjusted
to minimize the energy has been studied. Here, a complementary point of view is adopted;
namely, for a given geometry and given total charge, we study how the charge distributes
over the polymer to minimize the energy. Of course, since the geometry plays the role of
random environment, awkward geometries can arise as is explained in section 5 later. It
proved computationally easier to consider the continuous version of the previous model; it
is expected, however, that both discrete and continuous models have the same asymptotic
behaviour. We now finish speculative considerations about the physical interpretation of
our model and define it mathematically.

Let T be a fixed strictly positive integer anid an arbitrary real number. We denote
by C[%f’T] the space of continuous real functio¥sdefined on [07T] such thatX(0) = 0
and X(T) = b. We denote by(X,)c0.r; the standard Brownian bridge process on the
spaceC%?T]. Let (Yi)i>0 be a sequence of independent Bernoulli variables, of parameter
p = P{Y; = 1} = 1 - P{Y; = 0}, also independent of the Brownian bridge and defined
on a probability spac&. Define, on the probability space, the renewal process, i.e. the
strictly increasing sequence of random positive integ€rs -0, with Uy = 0 and recursively
Uy =infli > Uy_1:Y; =1}. By Ny =sufi : U; < T} we denote the last indexsuch
thatU; < T. Thus

O0=Up<Ui<---<Uyn <T <Uppy1 <---

ForU = (U;)ien andX = (X,;);¢0,77, the energy of our model is given by the Hamiltonian
Hy : Q x C — RT, defined by

Nt
Hr (U, X) =Y (Xy, = Xy, )* + (b — Xy,)*. @)

This Hamiltonian is the continuous analogue of the Hamiltonian (1) considered in [11].
The length of the protein is identified with the paramelerand the Gaussian charges
are modelled by the Brownian bridge process. The constraint of fixed total chaige
automatically satisfied by all conflguranonsaﬁg . The directed polymer acts as a random
environment for the Brownian bridge. Notice that the numNerof terms in the first sum

if the Hamiltonian is a random variable, depending on the environment.

We now define the thermodynamics of the model. Denot&py the mean expected
value, byE{:|R} the mean expected value conditioned to the process or variable or event
R, and byEx{-} the mean expected value with respect to the distributioR oWith these
notations, the partition function is

Zr(B) = E{exp(—BHr)|(N7, U)}. 3

The parameteTl’ obviously plays theole of volume. The finite-volume, specific, quenched
free energy is defined, as usual, by

1
fr(B) = BT log Z7(B) 4)
and the finite-volume, specific, annealed free energy is given by
_ 1
fr(B) = T8T logEv,,v)Zr (B). 5)

This model, while reminiscent of the system studied in [15], has, however, a much richer

structure since the random environment given by the renewal process is independent of
the bridge. A model related to the one studied here was also treated in [3] where the
unconstrained asymptotic behaviour of the process was given.
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With the formulation that we use, we impose the total charge to be fixed, thus avoiding
the usual subtleties [12, 1] of conditioning with respect to the final point. Moreover, with
the total charge being left as a free parameter from the very beginning, several scaling laws
can be tested.

We study the full thermodynamics of this model and we prove the following.

Theorem 1.1 Denote byV; = U; — U;_; the increment of the renewal process. Let
limy_ob?/T = z € [0,00[. For every inverse temperatufg € R and for every
asymptotic behaviour of the total chargee [0, oo, the quenched specific free energy,
fr, converges almost surely, f@r — oo, to a trivial random variablef,,, where

- r
foo(B) = Z/S]E log(1 +28V1)

andp =P(Y1=1).

Remark The previous theorem is established for a finite limitlt is not difficult to see,
however, that this result remains true even in the gaseco provided that the divergence
of the ratiob?/ T is not very violent (sublinear).

The specific free energy can easily be shown to be a smooth convex functign of
In fact, the seriesy ;- gx(B)P(V1 = k), with g(B) = [log(1 + 28k)]/B that defines
E[log(1+ 28V1)]/B, converges uniformly ir8. Since the functiory, is C”, with arbitrary
orderr, and convex (i.ed?g;/3p% > 0), these properties also hold for the expected value
by the uniform convergence of the series.

Thus, the theorem indicates that there is no phase transition at the thermodynamic level.
Comparing the model that we studied with standard statistical mechanics models, we see that,
expanding the interaction tertiXy, — Xy, ,)? of the Hamiltonian, we get a contribution
—23"M Xy, Xy, , reminiscent of the term-23"" o;0;_; for the standard Ising model.
Notice that here the range of pair interactiois= U; — U;_; is an unbounded random
variable introducing arbitrarily long-range correlations. However, as fdilas< oo, the
model behaves, on average, as a finite-range one-dimensional model. It is expected that
this model undergoes a phase transition only ibecomes non-integrable; however, in this
regime the model is not soluble anymore.

Besides the thermodynamic behaviour, we also obtain results on the scaling of the
ground-state energy. For the model studied in [11] it is argued that when the total charge
b scales asymptotically liké ~ T* (where f ~ ¢ means lim_., f(T)/g(T) = 1) then
the minimum of the energy scales like nfih~ 7™, whered(x) is a critical exponent
continuously depending an These results are based on heuristic arguments and numerical
simulations. Here we prove the following.

Theorem 1.2 Let0< p=P¥1 =1 <1,g=1—-p,b € R, andT € R*. Then, we
have
Ir = — lim = log[E(exp(—BHT)|(N, U))] = b
=", PR EIE N+
Moreover,
b? r
E@Zr)=—@A-q").
pT

The previous result suggests that for fixecandg = 1 — p, if b ~ T*, the dominant
behaviour of the minimum of the Hamiltonian will bB[miny H] ~ 7%~ For p



A Brownian bridge polymer model in a random environment 1271

and ¢ depending onT, however, the precise asymptotic behaviour can be changed as
is demonstrated in section 5.

This paper is organised as follows. The next section deals with technical explicit
computations and intermediate results on finite-volume systems. These results are used
in section 3 to obtain the thermodynamic limit of the specific free energy. The zero
temperature limit and ground-state energy are studied in section 4. In the final section
some open problems are presented. The appendices contain some well known results so
that the paper is self-contained.

2. The conditional expectation of the Boltzmann factor
Let w = (uq,...,u,) € R" be a vector with O< 41 < --- < u, < T and R(n, u) denote
the event
R(m,u) ={Nr =n; Ut =u1,..., Uy, = u,}.
On this event, the Hamiltonian becomes a function solely of the Brownian bridge and reads

D Xu = Xu )P + (b — X,,)%.
i=1

Introduce the random vectd = (Ei,..., &,) with & = (X,, — X, ,) together with
its expectation vectopr = (uy, ..., ;) With (see appendix Au; = EE;, = bvy;/T =

yielding

v viv1 -+ V1l
0 1] vova -+ UV2U,
. T :
v,
§ UpV1 -+ Uply

Notice that since(1/7T)> |, vi = u,/T < 1, the matrixQ is invertible and its inverse

reads
1

v, 1 .. 1
P 1 [ .
Q= + : :
T — u,
vt 1 ... 1
Moreover, its determinant is explicitly computed (see appendix B) and gives
T

Q (T —Mn) ]_[jzlvj

Therefore, the conditional expectation of the Boltzmann factor is expressed as
Elexp(—BHr (X, U))|R(n, w)] = (27) "% detQ~*[*/

X fRn expl-{BHr (€, u) + (6 — W'Q (€ — )} dér ... d&,

where (-)! denotes the transpose. The next step is to evaluate this integral by reducing the
exponent of the integrand into a quadratic form of the integration variable. For that purpose,
introduce the auxiliary matrix

v1_1+2,3 1 ... 1

1
Q= +<2'3+T—u> ;
v+ 28 "\l -1
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Using the results proved in appendix B, we deduce that this matrix is positive definite and
admits a regular square robt(i.e. Q' = I'?) whose non-vanishing determinant yields

n 1/2 1 n 1/2
detl’ = A 1 2 At
() (2 (2, +2) 507

with A; = vj‘l + 2B. Introducing the auxiliary vector = I'"1(28b1 + Q~1u) with
1=qQ,..., 1), we have

E(exp(—BHr)|R(n, w)) = (27)"/? detQ~*|"/? / exp(—M (u, £)) d&; ... dg,

with
M(u, §) = 3(T¢ — ) (T — ) +c(h)

and
c(B) = Bb® + 3u'Q  pu — 3r'r.

Now theé& integration can be explicitly performed by the change of variables
£ =T&—7r

that introduces the Jacobian determinant in the volume elemént..dl, =
| detD' 1| dg; ... dg, to yield

E(exp(—BHr)|R(n, w)) = | detQ 2| detl | exp(—c(B)).

The only thing remaining is the explicit computation of the constdpy. Straightforward
algebraic manipulations, although extremely cumbersome, are needed. Introducing the
auxiliary quantities

2b2ﬁ2
[y(B) + i (vt +28)H

2h? 1
A2(B) = Tﬁ (Z(U;l + 2ﬂ)‘1)
i=1

As(p) = 22F ( ! +1)_1
: T \y(B)(C_ o + 28D

X{(T —un) Y (B) tun = Y (07 25)_1}
i=1

b2 n -1\ -1
A4(B) = Z(T—un)2<y('3) + <Z(vi1 + 2/3)_1> )

i=1

A1(B) =

with
y(B) = (T —u,) t+28

we can prove that

2

b u
_ b2 v n
c(B) = Bb” + TT —u,

— A1(B) — A2(B) — A3(B) — Aa(p).
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Remark Since explicit formulae for the conditional expectation with respect to the event
R(l’l, U) = {(NTs U) = (ns 'U/)}

are obtained, the conditional expectatiéa| Ny, U) is also explicitly known. In fact, if for
an integrable functiorF,

E(F[(R(n,uw)) = ¢(n, u)
then
E(F|Nr,U) = ¢(N7, U).

So that, if we replace in the above formulady Ny andu; or v; by U; or V;, respectively,
we obtain the corresponding expressions for the conditional expectéiiopé,, U).

We have thus established the following.
Lemma 2.1 Assumingg > 0 and using the notation introduced so far, we have
E (exa(—BHr)|N7,U) = ¥ (Nt, U)
where
¥ (n, w) = Elexp(—BHr)|R(n, u)]

e | e e R
jo1 \1+ 2By QA+ y Bt +28)71) '

The annealed partition function is also immediately computed. We have
T—1-n T-1

T-1
EZr(B)=)_ p'q¢" " Y - Y Elexp(—BHr)IR(n, w)].
n=0

uy=1 Up=uy—1+1

3. Thermodynamic limit of the specific free energy

In this section theT — oo limit of the specific free energy will be evaluated. Some
notation and well known results on the renewal process are necessary. l&inee0
and U, = inf{lk > U,_; : Y, = 1}, the variablesY; being independent and identically
distributed, the renewal proces®;) can be written as a sum of independent geometric
variablesU, = ", V;, whereV, = U; — U;_;. For every integerr > 1, we have that
P(Vi = x) = pg*~t, wherep = P(Y; = 1) = 1 — q. Thereforeyn = EV; = 1/p. Also of
special interest is the random variale = supk : U, < T}. Obviously, limy_, o, Ny = oo
and, using the strong law of large numbers, almost certainly (see [2] for instance)

i Ny 1

e T m P
Notice also that althoughVy is not a stopping time with respect to the-algebra
o(Y1,...,Yr), the random variabl&V; + 1 is, in contrast, a stopping time.

Lemma 3.1 The finite-volume specific free energys, is a random variable reading

1 M 1 1
frB) = 3T ;Iog(1+ 2BVi) + 3T logT — 3BT log(T — Uy,)
1 -1 - -1 -1
‘z,TT'Og [1+(<T—UNT> +2/3);(V,» +28) }
p>  1b> Uy, A(B)
T BT TT— Uy BT
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where A(B) is a random variable such that

E(A(B)In, u) = A1(B) + A2(B) + A3(B) + Aa(B)
andA,, ..., A4 are the expressions given in the previous section.

Proof. Recalling the remark on conditional expectations given at the end of the previous
section, lemma 2.1, and the expressiond¢#), the present result follows immediately.

Studying the thermodynamic limit of7 is equivalent in studying th& — oo limit
in the above formula. Notice, however, that besides random terms whose limit must be
computed, there are also deterministic terms of the foffif’ whereb is the total charge
of the protein, supposed to scale with the sizef the molecule likeb ~ 7¢. It follows
that
) 1 ifa =1/2
ZEIJE)TIOO?: 0 -Ifot<l/2
00 if @« >1/2.
We do not fix the exact behaviour here. We only assumeztaf0, oc] in the following.

Proof of theorem 1.1 It is enough to study thd — oo limit of all individual terms
appearing in the expression fgy given in lemma 3.1.

First remark that lim_, ., Ny = oo almost surely. LetX; = log(1+ 28V;) > 0. On
the event{limy_, ., Ny = oo}, for the independent |dent|cally distributed random variables
X; the strong law of large numbers holds. Hence,

Z log(1+28V)) = Z log(1428V)) 2 ﬂE[Iog(l +28W1)]

%T %TN
becausevy/T a8 p.

The second term trivially vanishes in the limit. As for the third term, remark that
1< T—-Uy <T, therefore it also vanishes in the limit. For the fourth term, remark that
(T - Uy 428 <1+28 and Y (Vi +28)7t < Y, V; = Uy, < T, hence this
term gives also a vanishing I|m|t|ng contnbution. The fifth term yields, by definition,

For the study of subsequent terms we introduce the random vadaple T — Uy,
and the numerical sequengg = b?/T converging toz. With this notation the sixth term
reads
Uy, 1

T 2B8A7’
Because(V,-‘1 +28)7t> @+28)tand Ny 2 o it follows that the inverse sum,

appearing in the expression for the seventh term, vanishes almost certainly in the limit.
Hence, the seventh term is almost certainly asymptotically equivalent to

2B8A7
Ty o8A,
The arguments used for the study of the first term guarantee that the eighth term

2
_M1<Z(v—1 +28)" ) 233 _2pzE[(V;+ 2871

T

For the ninth term we obtain
_252[<UNT/T)(1+2/3AT>—1 (1/T)Z (V287
r 1+[(2B8+ A )Z (Vi 4 2p)-11
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Again, using the observations thag2- A;* > 28 + 1 and Y.V, (V, ™t + 28)7 ¢
Nr(1+ 2B)71, the large denominator 4 [- -] reduces to 1 in the I|m|fT — Q. Th|s
fraction, therefore, gives rise to two contributions, asymptotically equivalent to

1
—2zr—— 4+ 2zpE[(V{ 1+ 28)7Y.
ZZT1+2/8AT+ zpE[(V] ™+ 2B)77]
The same arguments can be used to study the last term

b2 ) Ny ) B —19-1
“rir e[t (R e) |

i=1
Obviously, again, the ternqz (V‘l + 28)"H~1 vanishes in the limit. It remains a
contribution asymptotically equwalent to
Zr ir
- 2BAr + 1+ 28A7

Adding together all but the first terms, we get a net contribution

Un, 1 Uy 1
zr ( T 1) 28A, + 221 (1— ) 11 28A, 250,

Now the proof is completed by remarking that; > 1—so that both(28A7)~! and
(1+ 2B8A7)~ are bounded from above, uniformly iIR—thatz; — z € [0, oo[, and that

the ratioUy, /T 25 1. 0

4. Finite-volume ground-state energy

We can now consider the behaviour of the ground-state energy. First notice that a standard
Laplace argument should imply thaj coincides with mj(eco,) Hr (U, X) and, therefore,

results aboutZy must be interpreted as results concernmg the finite-volume ground-state
energy of the model.

Proof of the theorem 1.2 The proof proceeds by examining how the individual terms in the
expression ofF(8) = —(1/8)log Z7(B) = T fr(B), where fr(8) is given in lemma 3.1,
behave in the limit8 — oco. Namely, we examine the behaviour whgn— oo of the
individual terms for the foIIowing expression'

Fr(B) =Tfr(B) = Z log(1+28V:) + 72 L logT - —ﬁ log(T — Un)

2

+b% +

~ log [1+ (T — Uy +2ﬂ)Z(V,~1+2ﬁ)‘l}
i=1

1 Uy, AR AxB)  As(B)  Aup)

2B (T — Uy,) B B B B

It is easy to see that the only terms remaining in the lifnit> oo are the fifth one—giving
trivially a contribution equal té#>—and the seventh one—namely,

fim A1) _ i & __ "
poee B oo 1 BAD T [ A+ V)DL 1N
Adding the two non-vanishing contributions, we get

b? b?
ZI.+NT_l - 1+ Np

ﬂlim Fr(B) = b® —
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and the first assertion of the theorem follows.
The second assertion is obtained by an elementary summation:

1 1 =rr 1
E - = n+1l T—(n+1) -~ (1- T )
<NT+1) pT;<n+1)p 1 o)

Therefore, collecting all terms,

. b?
E(Zr) = E(lim Fr(B) = — (1—q").
p—o0 pT

5. Conclusion and open problems

It is established that the model studied here has well-defined thermodynamics in the sense
that the infinite volume limit of the quenched specific free energy exists; moreover, this
limit is a trivial random variable—i.e. almost certainly a constant. This result shows the
sample independence of the thermodynamic properties of the model at every temperature;
a feature common to all short-range disordered systems.

The large scale behaviour of the average ground-state energy is also very instructive.
Suppose first that the parametgrandq are fixed—independent df—and non-trivial i.e.
O< p,qg <1 Then

]E[ir}f Hy(U,X)] ~z/p for large T

and it has a finite value only when < +oo. Now, a finite and strictly positive means

that the total charge scales @%/2 for large T, while the number of visited sites from the
directed random walks behaves likd". Allowing for z = oo by choosingb ~ T* with

x > 1/2, for instance, leads to an asymptotic behaviour of the total energy of the form
T72-1, On the other hand, nothing prevents us from choogiramdg depending orf’. To
illustrate what may happen, suppose that we chgot®scale asymptotically as/ T, with

0 <a < 4o00. Then

2
E[inf H7 (U, X)] ~ b—(l —exp(—a))
X o

and this expectation is finite provided that the total charge remains finite. For a scaling
of the formb ~ T*, the total energy behaves like**. A change of the critical exponent
is observed. At the same time, the total number of visited sites does not diverge. Of
course various other asymptotic behaviours can be obtained by choosing different scaling
laws for the parameterg andq (such asp ~ aT/logT, for instance). While constani
gives a more or less regular distribution of the charge over the protein, volume-dependent
environments give rise to highly irregular charge adjustments. The result we have obtained
allows an exhaustive study of all these scaling behaviours.

What remains an open problem, for the moment, is the statistical mechanics study of
the system. Namely, for every realizatiédh of the random environment, we can define
a random finite-volume Gibbs measurey, on the spaceZ[%f’T] as a measure absolutely
continuous with respect to the standard Gaussian meaggrepf the Brownian bridge.
This Gibbs measure can be defined through its Radon—Nikaderivative

dur exp(—BHr (U, X))
I, x) =
dyr ( ) Z7(B)
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where Z7 () is the partition function that depends also &n It is not yet clear whether

a Dobrushin—Lanford—Ruelle construction is possible for this model, and neither is it clear
whether there is a phase transition or not, whether it be in the DLR or the weak sense. These
fundamental questions for the statistical mechanics formulation of the model are presently
under investigation.

A second problem that is still under investigation concerns the thermodynamics of the
model defined for genuine random walks and not directed random walks. This destroys
the explicit renewal process structure of the model and makes the computations much more
complicated, but not untractable.

Summarizing, inspired by the protein folding statistical mechanics problems, we are
confronted with a new class of systems, reminiscent of both spin glasses and random walks
in random environments.
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Appendix A. Identities for the Brownian bridge

Let (W; : s > 0) be a Brownian motion starting from zero and introduce the process
Yy :s > 0) by

Y, =(T —1) / L aw
e 0 T — S"
Then, the Brownian bridge betweéfy = 0 and X = b is expressed by
t
thb?JrYt fort € [0, T].

It is immediate to verify the following identities that are reported here only for completeness:

E¥:) =0 E(X:) = % EX: — X,) = ;(l —9)

and
o T —t o %% (T —1)
E),) = t IE(X,):?Jr T t.
Fors < t, we also have
(T —1) b3t (T —1)
E(YYYZ) - N E(XYXZ) - ? + T N

E((Y, — Y,)?) = LTWT —(t—5))

2 v 1 2
E((X; — X;) )=<T2—T>(I—S) +@—s) <t

and

1 2
Var((X; — X)) =t —s) — ?(t — )%
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Finally, for s; < s < 11 < £, we have
(s2 —s1)(t2 — 11)
T

1
72~ T> (s2 — s1)(t2 — 11)

E((Y,, = Y)Y, — Y5,)) = —

2
E((X,, — Xi)(X,, — Yy) = (
and

1
Cov(Xy, — X)), (X, — Xy)) = —?(Sz —s1)(r2 — 11).

Appendix B. Determinant and positive definiteness for a class of matrices

For £ = (¢1,...,¢,) € R" denote byD(¢) the diagonal matrix,D(¢);; = ¢;5; for
i,j=1,...,n. Fora € R denote bya the constant matrix whose elements are= a for
i,j=1,...,n. From [18, p 92], we get the following property:

detD(¢) +a) = ﬁzj +a2n: ]_[ ?;.
j=1 i=1 j=1
J#

Consequently, i; # O for every j, then

detD(6) +a) = (]_[zj) (1+a2£;1). (6)
j=1 i=1

Remark, moreover, that the matii® (£) + a) is symmetric and that, in the cage> 0, for
alli =1,...,n anda > 0 the matrix(D(¢) + a) is positive definite. Therefore there exists
a positive definite symmetric matrik(¢, a) that satisfies

(D) + ) = (T'(¢, a))?
and

detT'(¥, a) = (]‘[z,) ’ <1+ a sz—l> §
j=1 j=1

Appendix C. Inversion for a class of matrices

We use the notation already introduced in appendix B.&=er({y, ..., £,) € R" we define
the matrixS(€) by S(¢);; = ¢;£; fori, j =1,...,n. Also we denote™! = (EIl, e E;l),
so thatD(¢™Y) = (D(#)) L.

Lemma C.1 Assumet; # 0 for everyi =1, ..., n.
o If y € R verifiesy Y_'_, ¢; # 1, then the matrixD(¢) — yS(£))~! exists and verifies
n -1
(D®) —yS®) ™t =D@) "+ y(l —y Za) L
i=1

e Reciprocally, ify 37_, ¢71 # —1, then the matrixD(£) + y1)~* exists and verifies

n -1
D@ +yDH ™ =DEH -y <1 +y Zﬂﬁ) Seh.
i=1
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Proof. Denote byR(¢) the matrixR(£);; = ¢;, for i, j = 1,...,n. It is immediate
to verify the identitiesD(£)R(£) = S(¥), R(¥)? = Q' )R, and R@)D®)™! = 1.
Hence,D(¥) — yS(€) = D®)(I — yR(£)) and, therefore, it follows by direct computation
that(l — yR() 1 =1+y@Q -y Y| ;€)'R®¥). Now

D) —ySW) " =DW®) * +y (1 —y Z&)R(&Dw)l

i=1
which is enough to conclude. d

Hence, under the condition of this lemma ang it 0O,

n -1
(D®) —yS@) =D + (yl - Zei) 1
and

-1
(D@ +yDt=De™ - (yl + Zerl) Su™).
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